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Role of Electronic Asymmetry in the Design of New selective step(sf15 Thus, a transition metal complex with a
Ligands: The Asymmetric Hydrocyanation bidentate ligand in which the two ligating atoms are electroni-
Reaction cally different could impart stereoelectronic control in the
formation of a specific product, resulting in enhanced selectiv-
T. V. RajanBabu* and Albert L. Casalnuové* ity.14 ‘Indeed such effects may be responsible for the high
o ’ enantioselectivity observed in a number of asymmetric reactions
Department of Chemistry, The Ohio State Lémsity wherein different chelating atoms are usé# Unfortunately,
100 West 18th Zenue, Columbus, Ohio 43210 @ clear delineation of the steric and electronic effects is not

Central Research and Delopment possible in many of these systems. Ligands specifically

Experimental Station, The DuPont Company designed to probe pure electronic asymmetry gave only moder-
Wilmington, Delaware 19880  ate improvements over the more symmetric analdg¥o the

best of our knowledge such ligands have not been tested in
Receied March 20, 1996  asymmetric carboncarbon bond-forming reactions. Here we
report on the use of an electronically unsymmetrical bis-3,4-
diarylphosphinite ligand derived from arp-fructofuranoside
(3) to achieve the highest enantioselectivity$ 97.5/2.5)
ever recorded for the asymmetric hydrocyanation reaction. In
ddition, the concept is further illustrated with the use of one
f the simplestC,-symmetric systems, viz., a bis-phosphinite
erived from (S,S)-tartranilg).

Vinylarenes react with HCN in the presence of Ni(0)
omplexes of vicinal diarylphosphinites to give exclusively the
ranched nitriles, which are potential intermediates for the
synthesis of arylpropionic acids (eq 1). The enantioselectivity
depends on the phosphorus substituents, and we have previously
shown that electron-withdrawing substituents on phosphorus in
ap-glucose-derived phosphinite system gave high ee®106)
for this reactiont®®¢in which the major product is th&

The concepts o€, symmetry and catalystsubstrate steric
interactions have played an important role in the design and
understanding of asymmetric catalysts and stereoselective
reagents:? The C, symmetry element often simplifies the
synthesis of the reagents and serves to reduce the number o
competing diastereomeric intermediates in reactions involving d
their use®* Most often, the mode¥svhich adequately predict
the stereochemical outcome of these reactions are based on thg
spatial orientation of groups within the disymmetric environment b
of the auxiliary or catalyst. Such steric-based, heuristic models
are used not only to rationalize results but also to design more
effective catalyst§. Even so, examples of the electronic tuning
of asymmetric catalysts are appearing in the literature with
increasing frequency.12 Furthermore, in several cases, good
enantioselectivities were obtained using chiral ligands without
C, symmetry?:10-12
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~ The underlying reasons for the dependence of enantioselec- e o P Py . o
tivity on ligand electronics are only poorly understood. None- N(COD)o/hexane AT N, Acids
theless, the mechanistic and structural information that has 2 R(+)-naproxen: Ar = 2-(6-methoxynaphthy)

become available in these cases suggests that a rationale based . o . ]

on steric effects alone does not adequately explain the stereo€nantiomer. A serious limitation of ligand design based on
chemical outcome. For reactions under the Curlilammett natural products such as sugars is that often only one of the
regime, stereoelectronics may well play a determining role in enantiomers is readily availabie. In preliminary screening of

the relative transition-state energies involved in the enantio- various sugar-derived ligands, we discovered that 3,4-phos-
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Table 1. Effect of Electronic Asymmetry on MVN

. Py (n®-benzyl)
Hydrocyanation Son <P2>Ni/ ym- ArC’H(CN)CH,
entry/ligand X Y % ee oR nitrile nsertion 0 elimination 2
1/5a H H 43
2/5b 3,5-(CR)2 3,5-(CR)2 56 o A ,
3/5¢ H 5 3,5'§CF3§2 58 P\Ni’\ ove 1 ::izifw ),CeH.
4/5d 3,5-(CR). H 89 (95 at 0°C) o P oN T
5/5e 4-CHO 4-CHO 25 A2
?Eg gggg%i i_lc:}bo gg Figure 1. Abbreviated mechanism of asymmetric hydrocyanation.
8/5h 3,5-(CHy)2 3,5-(CH), 40 molecule showed a similar, though less dramatic effect. Thus,
9/5i 3,5-(CR)2 3,5-(CHy)2 78 the highest ee, 77%S, was obtained with a mixed phenyl/
105j 35-R 3,5-R 45 3,5-bis(trifluoromethyl)phenyl derivative8¢), whereas the€,-
Eg:‘ ';5_5 315'5 gg symmetric phenyl&a) and 3,5-bis(trifluoromethyl)pheny8b)
135m 35-F 3,5-(CF)» 42 derivatives gave 54 and 70% ee respectively.
14/5n 3,5-(CR): 3,5-k 78 o o ol
_.OH Ar,PCl _.OPAr, ArPCI _.OPAr,
Ph-N;:L Ph—N;i:[\ — Ph—N;::L 3)
OH OH OPAr',
largely kept constant and electronic effects systematically varied. ° ° °
The widely different reactivities of the 3- and 4-hydroxyl groups ¢ T AR e 8 b.bis-CFy-GHe
of the fructofuranoside system can be exploited to prepare 8o Ar=Ph A= 3,5bis-CFs GHa

electronically unsymmetrical bis(diaryl)phosphinites (eq 2).  Based on kinetic and isotope labeling studies we prop8sed
Hydrocyanat_lon of 6-r_nethoxy-2-V|nylnaphthalene was carried 53 mechanism (Figure 1) for the asymmetric hydrocyanation of
out as described earli€f and the products were analyzed by vinyl arenes in which the intermediat® plays a key role. We
HPLC (Table 1). proposed that the relative rates of formation 1df and the
subsequent reductive elimination, as a function of the ligand
0 0 /7% arome OO e °T'z,.oyeop<@y>z o electronic properties, dictated the overall selectivity. If the
MME —eo, MME oo Z\/(OP primary effect of electron-withdrawing phosphorus aryl sub-
HO OH AP0 OR I <<i7>\x>2 stituents is to accelerate the final reductive eliminafbthen
3a 4 s the enhancement of enantioselectivity may result because one
of the diastereomers df0 may be disproportionately affected.

As anticipated from our previous wotR2 electron-donating The precise factors favoring a particular diastereomer are
substituents on the phosphorus aryl groups give the lowest ee’spresently unclear, but the results with themethyl fructo-
(entries 1, 5, and 8). Electron-deficient phosphinites increase furanoside ligand frame strongly suggest the importance of a
the selectivity to some extent (entries 2 and 10). However, the stereoelectronicomponent. For example, the effect of elec-
most dramatic increase (entry 4) was noticed when the C tronic asymmetry may reflect the importance of a trans
phosphinite is relatively electron-rich (f#) and the G relationship® between they®-aryl fragment and the phosphorus
phosphinite is electron-deficient ([3,5-(§FCsH3)]2P). The bearing the electron-withdrawing aryl grougisly.
relative juxtaposition of the electronically different phosphino ~ These results clearly demonstrate that incorporation of
groups seems to be important, since reversing the order (entryelectronically different phosphorus chelates can markedly
3) produces no better selectivity than the symmetric electron- enhance enantioselectivity with certain ligand frame works. Thus
deficient phosphinite (entry 2). A similar, albeit, less dramatic, we have demonstrated that by appropriate electronic tuning of
trend is observed with the pair of phosphinites with [3,5{F  ligands derived from two of the most abundantly available
CeH3],P and PBP (entries 1, 10, 11, and 12). The unsym- sugars, viz.p-glucosd® and p-fructose, both enantiomers of
metrical phosphinite with the more electron-deficient phosphorus naproxen nitrile 2) can be prepared in excellent enantioselec-
at the G_position of fructose is clearly superior (63% ee, entry tivity (91% S 95% R at 0 °C) via a catalytic asymmetric
12) to either of the symmetrical phosphinite (entries 1 and 10, hydrocyanation reaction. Elaboration of the concept of elec-
43 and 45%, respectively) or the one in which the more electron- tronic asymmetry in other systems and applications of unsym-
deficient phosphorus is at:{40% ee, entry 11). These results metrical diphosphinites and phosphines as ligands in other
are difficult to rationalize on the basis of any steric arguments reactions will be the subject of future work.
alone, and we suggest an electronic origin for these unusual

. : . Supporting Information Available: Details of the synthesis and
observations. The general trend suggests that for high er'am'O'spectroscopic characterization of ligands (7 pages). See any current

selectivity, G must carry the electron-deficient phosphinite and masthead page for ordering and Internet access instructions.
Cs, the electron-rich one. Other examples (entries 6, 7, and 9)
verify this conjecture. JA9609112
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